资源类型

期刊论文 32

年份

2023 2

2022 4

2021 5

2020 2

2019 2

2018 5

2017 2

2015 1

2014 2

2012 1

2011 3

2009 1

2008 1

2001 1

展开 ︾

关键词

产业链 1

保持边缘的自适应滤波器 1

力矩波动 1

变量选择 1

多元回归方法 1

大惯量 1

扫描格式转换 1

死区 1

氢能 1

焦化 1

直接还原铁 1

科里奥利质量流量计;数字信号处理方法;两相流工况;正交解调;滑动离散傅里叶变换;希尔伯特变换 1

稀土,永磁体,微磁学 1

稀疏性 1

精确模型 1

能源转型 1

说话人识别;直方图均衡化;i-vector 1

运动自适应插补 1

量化误差 1

展开 ︾

检索范围:

排序: 展示方式:

ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment

D. SENDIL KUMAR,R. ELANSEZHIAN

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 75-80 doi: 10.1007/s11465-014-0285-y

摘要:

In this paper the reliability and performance of a vapour compression refrigeration system with ZnO nanoparticles in the working fluid was investigated experimentally. Nanorefrigerant was synthesized on the basis of the concept of the nanofluids, which was prepared by mixing ZnO nanoparticles with R152a refrigerant. The conventional refrigerant R134a has a global warming potential (GWP) of 1300 whereas R152a has a significant reduced value of GWP of 140 only. An experimental test rig is designed and fabricated indigenously in the laboratory to carry out the investigations. ZnO nanoparticles with refrigerant mixture were used in HFC R152a refrigeration system. The system performance with nanoparticles was then investigated. The concentration of nano ZnO ranges in the order of 0.1% v, 0.3% v and 0.5%v with particle size of 50 nm and 150 g of R152a was charged and tests were conducted. The compressor suction pressure, discharge pressure and evaporator temperature were measured. The results indicated that ZnO nanorefrigerant works normally and safely in the system. The ZnO nanoparticle concentration is an important factor considered for heat transfer enhancement in the refrigeration system. The performance of the system was significantly improved with 21% less energy consumption when 0.5%v ZnO-R152a refrigerant. Both the suction pressure and discharge pressure were lowered by 10.5% when nanorefrigerant was used. The evaporator temperature was reduced by 6% with the use of nanorefrigerant. Hence ZnO nanoparticles could be used in refrigeration system to considerably reduce energy consumption. The usage of R152a with zero ozone depleting potential (ODP) and very less GWP and thus provides a green and clean environment. The complete experimental results and their analysis are reported in the main paper.

关键词: ZnO nanorefrigerant     reduced GWP     COP     pressure ratio green energy    

Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1572-1582 doi: 10.1007/s11705-021-2112-4

摘要: High density and uniform distribution of the gold nanoparticles functionalized single-stranded DNA modified reduced graphene oxide nanocomposites were obtained by non-covalent interaction. The positive gold nanoparticles prepared by phase inversion method exhibited good dimensional homogeneity and dispersibility, which could readily combine with single-stranded DNA modified reduced graphene oxide nanocomposites by electrostatic interactions. The modification of single-stranded DNA endowed the reduced graphene oxide with favorable biocompatibility and provided the preferable surface with negative charge for further assembling of gold nanoparticles to obtain gold nanoparticles/single-stranded DNA modified reduced graphene oxide nanocomposites with better conductivity, larger specific surface area, biocompatibility and electrocatalytic characteristics. The as-prepared nanocomposites were applied as substrates for the construction of cholesterol oxidase modified electrode and well realized the direct electron transfer between the enzyme and electrode. The modified gold nanoparticles could further catalyze the products of cholesterol oxidation catalyzed by cholesterol oxidase, which was beneficial to the enzyme-catalyzed reaction. The as-fabricated bioelectrode exhibited excellent electrocatalytic performance for the cholesterol with a linear range of 7.5‒280.5 μmol·L‒1, a low detection limit of 2.1 μmol·L‒1, good stability and reproducibility. Moreover, the electrochemical biosensor showed good selectivity and acceptable accuracy for the detection of cholesterol in human serum samples.

关键词: reduced graphene oxide     gold nanoparticles     electrochemical biosensor     cholesterol oxidase     cholesterol    

Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly

Lijuan Qiu, Ruiyang Zhang, Ying Zhang, Chengjin Li, Qian Zhang, Ying Zhou

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 390-399 doi: 10.1007/s11705-018-1751-6

摘要:

Water pollution has become an urgent issue for our modern society, and it is highly desirable to rapidly deal with the water pollution without secondary pollution. In this paper, we have prepared a reduced graphene oxide (RGO) wrapped sponge with superhydrophobicity and mechanically flexibility via a facile low-temperature thermal treatment method under a reducing atmosphere. The skeleton of this sponge is completely covered with RGO layers which are closely linked to the skeleton. This sponge has an abundant pore structure, high selectivity, good recyclability, low cost, and outstanding adsorption capacity for floating oil or heavy oil underwater. In addition, this sponge can maintain excellent adsorption performance for various oils and organic solvents over 50 cycles by squeezing, and exhibits extremely high separation efficiencies, up to 6 × 106 and 3.6 × 106 L·m−3·h−1 in non-turbulent and turbulent water/oil systems, respectively. This superhydrophobic adsorbent with attractive properties may find various applications, especially in large-scale removal of organic contaminants and oil spill cleanup.

关键词: superhydrophobicity     mechanically flexibility     water/oil separation     reduced graphene oxide wrapped sponge    

Multi-effect anthraquinone-based polyimide enclosed SnO/reduced graphene oxide composite as high-performance

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1231-1243 doi: 10.1007/s11705-023-2306-z

摘要: The cycling stability of SnO2 anode as lithium-ion battery is poor due to volume expansion. Polyimide coatings can effectively confine the expansion of SnO2. However, linear polyimides are easily dissolved in ester electrolytes and their carbonyls is not fully utilized during charging/discharging process. Herein, the SnO2 enclosed with anthraquinone-based polyimide/reduced graphene oxide composite was prepared by self-assembly. Carbonyls from the anthraquinone unit provide fully available active sites to react with Li+, improving the utilization of carbonyl in the polyimide. More exposed carbonyl active sites promote the conversion of Sn to SnO2 with electrode gradual activation, leading to an increase in reversible capacity during the charge/discharge cycle. In addition, the introduction of reduced graphene oxide cannot only improve the stability of polyimide in the electrolyte, but also build fast ion and electron transport channels for composite electrodes. Due to the multiple effects of anthraquinone-based polyimide and the synergistic effect of reducing graphene oxide, the composite anode exhibits a maximum reversible capacity of 1266 mAh·g−1 at 0.25 A·g−1, and maintains an excellent specific capacity of 983 mAh·g−1 after 200 cycles. This work provides a new strategy for the synergistic modification of SnO2.

关键词: anthraquinone-based polyimide     multi-effect     tin dioxide     reduced graphene oxide     lithium-ion battery    

Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation

Kai Wang, Jinbo Pang, Liwei Li, Shengzhe Zhou, Yuhao Li, Tiezhu Zhang

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 376-382 doi: 10.1007/s11705-018-1705-z

摘要:

Carbon nanotubes/graphene composites have superior mechanical, electrical and electrochemistry properties with carbon nanotubes as a hydrophobicity boosting agent. Their extraordinary hydrophobic performance is highly suitable for electrode applications in lithium ion batteries and supercapacitors which often employ organic electrolytes. Also the hydrophobic features enable the oil enrichment for the crude oil separation from seawater. The ever reported synthesis routes towards such a composite either involve complicated multi-step reactions, e.g., chemical vapor depositions, or lead to insufficient extrusion of carbon nanotubes in the chemical reductions of graphene oxide, e.g., fully embedding between the compact graphene oxide sheets. As a consequence, the formation of standalone carbon nanotubes over graphene sheets remains of high interests. Herein we use the facile flash light irradiation method to induce the reduction of graphene oxides in the presence of carbon nanotubes. Photographs, micrographs, X-ray diffraction, infrared spectroscopy and thermogravimetric analysis all indicate that graphene oxides has been reduced. And the contact angle tests confirm the excellent hydrophobic performances of the synthesized carbon nanotube/reduced graphene oxide composite films. This one-step treatment represents a straightforward and high efficiency way for the reduction of carbon nanotubes/graphene oxides composites.

关键词: carbon nanotubes     graphene composite     flash irradiation method     reduced graphene oxide     contact angles    

Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support

Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 299-309 doi: 10.1007/s11705-020-1925-x

摘要: In this paper, a series of cobalt catalysts supported on reduced graphene oxide (rGO) nanosheets with the loading of 5, 15 and 30 wt-% were provided by the impregnation method. The activity of the prepared catalysts is evaluated in the Fischer-Tropsch synthesis (FTS). The prepared catalysts were carefully characterized by nitrogen adsorption-desorption, hydrogen chemisorption, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, temperature programmed reduction, transmission electron microscopy, and field emission scanning electron microscopy techniques to confirm that cobalt particles were greatly dispersed on the rGO nanosheets. The results showed that with increasing the cobalt loading on the rGO support, the carbon defects are increased and as a consequence, the reduction of cobalt is decreased. The FTS activity results showed that the cobalt-time yield and turnover frequency passed from a maximum for catalyst with the Co average particle size of 15 nm due to the synergetic effect of cobalt reducibility and particle size. The products selectivity results indicated that the methane selectivity decreases, whereas the C selectivity raises with the increasing of the cobalt particle size, which can be explained by chain propagation in the primary chain growth reactions.

关键词: cobalt catalyst     cobalt particle size     Fischer-Tropsch synthesis     reduced graphene oxide     supported catalyst    

strong>Fabrication and photocatalytic ability of an Au/TiO2/reduced

Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-017-0977-8

摘要: A new type of Au/TiO /reduced graphene oxide (RGO) nanocomposite was fabricated by the hydrothermal synthesis of TiO on graphene oxide followed by the photodeposition of Au nanoparticles. Transmission electron microscopy images showed that Au nanoparticles were loaded onto the surface of both TiO and RGO. Au/TiO /RGO had a better photocatalytic activity than Au/TiO for the degradation of phenol. Electrochemical measurements indicated that Au/TiO /RGO had an improved charge transfer capability. Meanwhile, chemiluminescent analysis and electron spin resonance spectroscopy revealed that Au/TiO /RGO displayed high production of hydrogen peroxide and hydroxyl radicals in the photocatalytic process. This high photocatalytic performance was achieved via the addition of RGO in Au/TiO /RGO, where RGO served not only as a catalyst support to provide more sites for the deposition of Au nanoparticles but also as a collector to accept electrons from TiO to effectively reduce photogenerated charge recombination.

关键词: Reduced graphene oxide     Au     TiO2     Nanocomposite     Photocatalysis    

Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of

Bei Ye, Zhuo Chen, Xinzheng Li, Jianan Liu, Qianyuan Wu, Cheng Yang, Hongying Hu, Ronghe Wang

《环境科学与工程前沿(英文)》 2019年 第13卷 第6期 doi: 10.1007/s11783-019-1170-z

摘要: GO or RGO promotes bromate formation during ozonation of bromide-containing water. CeO2/RGO significantly inhibits bromate formation compared to RGO during ozonation. CeO2/RGO shows an enhancement on DEET degradation efficiency during ozonation. Ozone (O3) is widely used in drinking water disinfection and wastewater treatment. However, when applied to bromide-containing water, ozone induces the formation of bromate, which is carcinogenic. Our previous study found that graphene oxide (GO) can enhance the degradation efficiency of micropollutants during ozonation. However, in this study, GO was found to promote bromate formation during ozonation of bromide-containing waters, with bromate yields from the O3/GO process more than twice those obtained using ozone alone. The promoted bromate formation was attributed to increased hydroxyl radical production, as confirmed by the significant reduction (almost 75%) in bromate yield after adding t-butanol (TBA). Cerium oxide (less than 5 mg/L) supported on reduced GO (xCeO2/RGO) significantly inhibited bromate formation during ozonation compared with reduced GO alone, and the optimal Ce atomic percentage (x) was determined to be 0.36%, achieving an inhibition rate of approximately 73%. Fourier transform infrared (FT-IR) spectra indicated the transformation of GO into RGO after hydrothermal treatment, and transmission electron microscope (TEM) results showed that CeO2 nanoparticles were well dispersed on the RGO surface. The X-ray photoelectron spectroscopy (XPS) spectra results demonstrated that the Ce3+/Ce4+ ratio in xCeO2/RGO was almost 3‒4 times higher than that in pure CeO2, which might be attributed to the charge transfer effect from GO to CeO2. Furthermore, Ce3+ on the xCeO2/RGO surface could quench Br⋅ and BrO⋅ to further inhibit bromate formation. Meanwhile, 0.36CeO2/RGO could also enhance the degradation efficiency of N,N-diethyl-m-toluamide (DEET) in synthetic and reclaimed water during ozonation.

关键词: Bromate     Catalytic ozonation     Graphene oxide     Cerium dioxide    

FMO3--TMAO axis modulates the clinical outcome in chronic heart-failure patients with reduced ejection

《医学前沿(英文)》 2022年 第16卷 第2期   页码 295-305 doi: 10.1007/s11684-021-0857-2

摘要: The association among plasma trimethylamine-N-oxide (TMAO), FMO3 polymorphisms, and chronic heart failure (CHF) remains to be elucidated. TMAO is a microbiota-dependent metabolite from dietary choline and carnitine. A prospective study was performed including 955 consecutively diagnosed CHF patients with reduced ejection fraction, with the longest follow-up of 7 years. The concentrations of plasma TMAO and its precursors, namely, choline and carnitine, were determined by liquid chromatography-mass spectrometry, and the FMO3 E158K polymorphisms (rs2266782) were genotyped. The top tertile of plasma TMAO was associated with a significant increment in hazard ratio (HR) for the composite outcome of cardiovascular death or heart transplantation (HR=1.47, 95% CI=1.13–1.91, P=0.004) compared with the lowest tertile. After adjustments of the potential confounders, higher TMAO could still be used to predict the risk of the primary endpoint (adjusted HR=1.33, 95% CI=1.01–1.74, P=0.039). This result was also obtained after further adjustment for carnitine (adjusted HR=1.33, 95% CI=1.01–1.74, P=0.039). The FMO3 rs2266782 polymorphism was associated with the plasma TMAO concentrations in our cohort, and lower TMAO levels were found in the AA-genotype. Thus, higher plasma TMAO levels indicated increased risk of the composite outcome of cardiovascular death or heart transplantation independent of potential confounders, and the FMO3 AA-genotype in rs2266782 was related to lower plasma TMAO levels.

关键词: chronic heart failure     trimethylamine-N-oxide     flavin monooxygenase 3     single nucleotide polymorphism    

design of novel proton-pump inhibitors with reduced adverse effects

Xiaoyi Li, Hong Kang, Wensheng Liu, Sarita Singhal, Na Jiao, Yong Wang, Lixin Zhu, Ruixin Zhu

《医学前沿(英文)》 2019年 第13卷 第2期   页码 277-284 doi: 10.1007/s11684-018-0630-3

摘要: The development of new proton-pump inhibitors (PPIs) with less adverse effects by lowering the pKa values of nitrogen atoms in pyrimidine rings has been previously suggested by our group. In this work, we proposed that new PPIs should have the following features: (1) number of ring II= number of ring I+ 1; (2) preferably five, six, or seven-membered heteroatomic ring for stability; and (3) 1

关键词: proton-pump inhibitor     adverse effect     pharmacological mechanism     toxicological mechanism     pKa calculation    

Toward the development of process plans with reduced environmental impacts

Fu ZHAO, Vance R. MURRAY, Karthik RAMANI, John W. SUTHERLAND

《机械工程前沿(英文)》 2012年 第7卷 第3期   页码 231-246 doi: 10.1007/s11465-012-0334-3

摘要:

Manufacturing process planning serves as a pivotal link between design and manufacturing. Process planning decisions play a critical role in determining the cost and environmental impacts associated with manufacturing. Past efforts to address environmental issues during process planning are briefly reviewed and potential approaches that can achieve reduced environmental impacts are then discussed. A proposed method is presented for environmentally conscious process planning. The method begins with an existing process plan, and then identifies impactful process steps, and associated design features, in terms of manufacturing cost and environmental impact. Alternative processes that can achieve these features are then considered to generate alternative process plans. These alternatives are then evaluated in terms of economic and environmental performance. The results of these evaluations are then used to generate a set of process plans that are non-dominated with respect to manufacturing cost and environmental impact objectives to produce a Pareto frontier. The proposed method is demonstrated using the manufacturing of a prosthetic hip shell as a case study.

关键词: process planning     life cycle assessment (LCA)     sustainable manufacturing     prosthetic hip shell    

Renin--angiotensin system inhibitor is associated with the reduced risk of all-cause mortality in COVID

《医学前沿(英文)》 2022年 第16卷 第1期   页码 102-110 doi: 10.1007/s11684-021-0850-9

摘要: Consecutively hospitalized patients with confirmed coronavirus disease 2019 (COVID-19) in Wuhan, China were retrospectively enrolled from January 2020 to March 2020 to investigate the association between the use of renin–angiotensin system inhibitor (RAS-I) and the outcome of this disease. Associations between the use of RAS-I (angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB)), ACEI, and ARB and in-hospital mortality were analyzed using multivariate Cox proportional hazards regression models in overall and subgroup of hypertension status. A total of 2771 patients with COVID-19 were included, with moderate and severe cases accounting for 45.0% and 36.5%, respectively. A total of 195 (7.0%) patients died. RAS-I (hazard ratio (HR)=0.499, 95% confidence interval (CI) 0.325–0.767) and ARB (HR=0.410, 95% CI 0.240–0.700) use was associated with a reduced risk of all-cause mortality among patients with COVID-19. For patients with hypertension, RAS-I and ARB applications were also associated with a reduced risk of mortality with HR of 0.352 (95% CI 0.162–0.764) and 0.279 (95% CI 0.115–0.677), respectively. RAS-I exhibited protective effects on the survival outcome of COVID-19. ARB use was associated with a reduced risk of all-cause mortality among patients with COVID-19.

关键词: COVID-19     RAS inhibitor     hypertension     all-cause mortality    

Largely reduced cross-plane thermal conductivity of nanoporous In

Dongchao XU, Quan WANG, Xuewang WU, Jie ZHU, Hongbo ZHAO, Bo XIAO, Xiaojia WANG, Xiaoliang WANG, Qing HAO

《能源前沿(英文)》 2018年 第12卷 第1期   页码 127-136 doi: 10.1007/s11708-018-0519-5

摘要: In recent year, nanoporous Si thin films have been widely studied for their potential applications in thermoelectrics, in which high thermoelectric performance can be obtained by combining both the dramatically reduced lattice thermal conductivity and bulk-like electrical properties. Along this line, a high thermoelectric figure of merit (ZT) is also anticipated for other nanoporous thin films, whose bulk counterparts possess superior electrical properties but also high lattice thermal conductivities. Numerous thermoelectric studies have been carried out on Si-based nanoporous thin films, whereas cost-effective nitrides and oxides are not systematically studied for similar thermoelectric benefits. In this work, the cross-plane thermal conductivities of nanoporous In Ga N thin films with varied porous patterns were measured with the time-domain thermoreflectance technique. These alloys are suggested to have better electrical properties than conventional Si Ge alloys; however, a high ZT is hindered by their intrinsically high lattice thermal conductivity, which can be addressed by introducing nanopores to scatter phonons. In contrast to previous studies using dry-etched nanopores with amorphous pore edges, the measured nanoporous thin films of this work are directly grown on a patterned sapphire substrate to minimize the structural damage by dry etching. This removes the uncertainty in the phonon transport analysis due to amorphous pore edges. Based on the measurement results, remarkable phonon size effects can be found for a thin film with periodic 300-nm-diameter pores of different patterns. This indicates that a significant amount of heat inside these alloys is still carried by phonons with ~300 nm or longer mean free paths. Our studies provide important guidance for ZT enhancement in alloys of nitrides and similar oxides.

关键词: nanoporous film     thermoelectrics     phonon     mean free path     diffusive scattering    

Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping

Xiuning HUA,Wei WANG,Feng WANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1130-1138 doi: 10.1007/s11783-015-0821-y

摘要: Chemical looping combustion is a promising technology for energy conversion due to its low-carbon, high-efficiency, and environmental-friendly feature. A vital issue for CLC process is the development of oxygen carrier, since it must have sufficient reactivity. The mechanism and kinetics of CO reduction on iron-based oxygen carriers namely pure Fe O and Fe O supported by alumina (Fe O /Al O ) were investigated using thermo-gravimetric analysis. Fe O /Al O showed better reactivity over bare Fe O toward CO reduction. This was well supported by the observed higher rate constant for Fe O /Al O over pure Fe O with respective activation energy of 41.1±2.0 and 33.3±0.8 kJ·mol . The proposed models were compared via statistical approach comprising Akaike information criterion with correction coupled with F-test. The phase-boundary reaction and diffusion control models approximated to 95% confidence level along with scanning electron microscopy results; revealed the promising reduction reactions of pure Fe O and Fe O /Al O . The boosting recital of iron-based oxygen carrier support toward efficient chemical looping combustion could be explained accurately through the present study.

关键词: chemical looping combustion     iron-based oxygen carriers     reduction kinetics     carbon monoxide     statistics    

Proposing two new methods to decrease lateral-torsional buckling in reduced beam section connections

Samira EBRAHIMI; Nasrin BAKHSHAYESH EGHBALI; Mohammad Mehdi AHMADI

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1581-1598 doi: 10.1007/s11709-022-0886-1

摘要: Reduced web section (RWS) connections can prevent lateral-torsional buckling and web local buckling experienced by reduced beam section (RBS) connections. In RWS connections, removing a large portion of web can result in shear demand intolerance induced to plastic hinge region. The present study aims to resolve the problems of RBS and RWS connections by proposing two new connections: (1) RBS with stiffener (RBS-ST) and (2) RBS with reduced web (RW-RBS) connections. In the first connection (RBS-ST), a series of stiffeners is connected to the beam in the reduced flange region, while the second connection (RW-RBS) considers both a reduction in flanges and a reduction in web. Five beam-to-column joints with three different connections, including RBS, RBS-ST, and RW-RBS connections were considered and simulated in ABAQUS. According to the results, RBS-ST and RW-RBS connections can decrease or even eliminate lateral-torsional buckling and web local buckling in RBS connection. It is important to note that RW-RBS connection is more effective in long beams with smaller shear demands in the plastic hinge region. Moreover, results showed that RBS and RW-RBS connections experienced strength degradation at 4% to 5% drift, while no strength degradation was observed in RBS-ST connection until 8% drift.

关键词: RBS     RBS-ST     RW-RBS     lateral-torsional buckling     cyclic performance    

标题 作者 时间 类型 操作

ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment

D. SENDIL KUMAR,R. ELANSEZHIAN

期刊论文

Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor

期刊论文

Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly

Lijuan Qiu, Ruiyang Zhang, Ying Zhang, Chengjin Li, Qian Zhang, Ying Zhou

期刊论文

Multi-effect anthraquinone-based polyimide enclosed SnO/reduced graphene oxide composite as high-performance

期刊论文

Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation

Kai Wang, Jinbo Pang, Liwei Li, Shengzhe Zhou, Yuhao Li, Tiezhu Zhang

期刊论文

Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support

Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri

期刊论文

strong>Fabrication and photocatalytic ability of an Au/TiO2/reduced

Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su

期刊论文

Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of

Bei Ye, Zhuo Chen, Xinzheng Li, Jianan Liu, Qianyuan Wu, Cheng Yang, Hongying Hu, Ronghe Wang

期刊论文

FMO3--TMAO axis modulates the clinical outcome in chronic heart-failure patients with reduced ejection

期刊论文

design of novel proton-pump inhibitors with reduced adverse effects

Xiaoyi Li, Hong Kang, Wensheng Liu, Sarita Singhal, Na Jiao, Yong Wang, Lixin Zhu, Ruixin Zhu

期刊论文

Toward the development of process plans with reduced environmental impacts

Fu ZHAO, Vance R. MURRAY, Karthik RAMANI, John W. SUTHERLAND

期刊论文

Renin--angiotensin system inhibitor is associated with the reduced risk of all-cause mortality in COVID

期刊论文

Largely reduced cross-plane thermal conductivity of nanoporous In

Dongchao XU, Quan WANG, Xuewang WU, Jie ZHU, Hongbo ZHAO, Bo XIAO, Xiaojia WANG, Xiaoliang WANG, Qing HAO

期刊论文

Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping

Xiuning HUA,Wei WANG,Feng WANG

期刊论文

Proposing two new methods to decrease lateral-torsional buckling in reduced beam section connections

Samira EBRAHIMI; Nasrin BAKHSHAYESH EGHBALI; Mohammad Mehdi AHMADI

期刊论文